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We consider delegating the tedious labor of calculating higher-order terms in singular per- 
turbation expansions to a computer by using the algebraic manipulation system MACSYMA. 
In particular, the method of matched asymptotic expansions for two model singular pertur- 
bation problems have been studied in detail. The first model resembles the boundary-layer 
equation, with a small parameter multiplying the highest derivative. In this case, both the 
outer and inner expansions are simple power series in E. The second model is a turning-point 
problem. The asymptotic expansions that resemble the series in low Reynolds number flow 
past a sphere are mixtures of powers and logarithms m E, and Fraenkel’s restricted matching 
principle is needed. We show that MACSYMA has successfully performed the higher order 
matching in these two problems. 0 1985 Academic Press, Inc 

1. INTRODUCTION 

The method of matched asymptotic expansions has been a powerful tool in 
solving singular perturbation problems of layer type. The series approximations 
often stop at the first few terms. Extending the series by hand is hardly feasible due 
to the mounting labor that is involved in higher order calculation. In regular per- 
turbations, the routine labor has been successfully delegated to a computer. The 
problem is ordinarily chosen so simple that the basic approximation is known in 
closed form and recurrence relations can be found for successive terms. The FOR- 
TRAN language is then used to do the arithmetic operations. In some cases (Van 
Dyke [i, 2]), dozens or even hundreds of terms can be found. With a sufficient 
number of terms, one will be able to analyze the structure of the series and to recast 
so as to improve its utility. 

It is conceivable that a similar approach can be taken in singular perturbation 
problems. On the other hand, the method of matched asymptotic expansions 
involves mainly algebraic oprations. A symbolic manipulator will be more 
appropriate than a simple arithmetic language, and MACSYMA is chosen for this 
task. MACSYMA has also been used to extend regular perturbation series (Ander- 
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son and Geer [3], Hue and Tenti 1141). But with the mounting storage requirement 
for the symbolic manipulation system, MACSYMA has not been used as often as 
FORTRAN in series expansion for regular perturbation problems. 

MACSYMA is a collection of programs embedded in a LISP interpreter. It is 
devoted to the manipulation of algebraic expressions that includes differentiation, 
integration, taking limits, solving equations, expanding functions in power series or 
Laurent series, etc. It is also a programming language in itself, with a syntax similar 
to ALGOL. The version that we used during this research runs under the Incom- 
patible Time-Sharing System (ITS), on the MACSYMA Consortium ( 
PDP-10 computer at MIT. 

We consider extending the singular perturbation series in two model problems 
with different kinds of asymptotic expansions. In Section 2, the method of matched 
asymptotic expansions is stated and the detailed formulations of the two models are 
discussed. Our experience in programming in MACSYMA is described in Section 3. 
Finally, in the fourth section, the results and the future use of MACSYMA in 
asymptotic matching are discussed. 

2. MATHEMATICAL FORMULATION 

In this section, we shall first briefly summarize the method of matched 
asymptotic expansions and then describe the formulations of the two models. 

2.1. Method of Matched Asymptotic Expansions 

Matched asymptotic expansions is a technique for solving an initial- or boun- 
dary-value problem for a function F(x, E) over a range of x in which no single 
asymptotic series for small E can approximate F uniformly. Usually two asymptotic 
series are needed to describe the function Fin two different regions in the domain of 
interest. At least one of the two problems describing the series will not be well 
posed since the initial or boundary conditions outside that region are lost. One will 
have to use “matching” in the overlap domain in order to recover those missing 
data. The prototype of a singular perturbation problem is Prandtl’s boundary-layer 
theory. 

Matching not only provides information on the undetermined constants in 
finding the asymptotic expansions, but also suggests (or checks) the appropriate 
asymptotic sequence in the inner (or outer) series. 

Van Dyke [S] proposed a simple-to-use matching principle (the asymptotic 
matching principle) which says that the m-term inner expansion of (the n-term 
outer expansion) is equal to the n-term outer expansion of (the m-term inner expan- 
sion), where m and n can be any integers. For convenience in programming and 
avoiding the confusion in counting terms, we introduce the following notations. Let 
g(y, E) be the inner expansion with inner variable y, and j(x, E) be the outer expan- 
sion with outer variable x. They are related in the following ways: g(v, E) =f(x, E) 
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and y = X/E. With O,,n denoting the operator’ that truncates the asymptotic series 
for fixed outer variable x as E --f 0 up to and including the E”’ In” E term, and IZ,] 
denoting the operator that truncates the asymptotic series for fixed inner variable y 
as E + 0 up to and including the E’ In’ E term, the asymptotic matching principle can 
be written as 

om,nli,j g(Y9 &) = ‘2.~ Om,n f tx2 &I* (1) 

For the case of pure power series expansions, we will omit the second subscript and 
the matching principle (1) becomes 

o,~ig(Y,E)=~iomf(X,E). (2) 

Fraenkel [6] warns that the asymptotic matching principle (1) may fail in the case 
that the asymptotic sequences are mixtures of powers and logarithms in E unless n 
and j are restricted to zero, i.e., 

Om,O1i,O g(Y3 &I = li,OOm,Of(X~ &I. (3) 

A less restricted matching principle is suggested by Lo [7], namely, in the case that 
the asymptotic sequences are known, the matching can be done in the following 
ways2: 

(44 

or 

(4b) 

We will compare the efficiencies between using (3) and (4) in the last section. 

2.2. Formulation of Model 1 

Our first model resembles the boundary-layer equation, in that a small parameter 
multiplies the highest derivative. The functionf(x, E) satisfies the following differen- 
tial equation: 

and the boundary conditions f(0, E) = A and f( 1, E) = B. This differential equation 
can be solved in closed form but we seek a series solution. Setting E = 0 reduces the 
differential equation to first order, so one of the boundary conditions must be aban- 
doned. The differential equation (5) suggestsf(x, E) to be the outer function, x to be 

1 We restrict our consideration to situation when expansions proceed in integral powers of E or 
mixtures of integral powers and logarithms of E. 

ZThe subscript y (or x) indicates that the final equation in the matching is done in the inner (or 
outer) variable. 
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the outer variable, and f( 1, E) = B to be the only boundary condition being enfor- 
ced. f(x, E) has a simple asymptotic expansion in E, namely 

The solutions for thef, are 

The approximation off(x, a) in (6) breaks down within the “boundary layer” where 
x = O(E). Introduce an inner coordinate y and an inner function f(y, E) which 
satisfy y = X/E and g(y, E) =f(x, E). g(y, E) is governed by the transformed problem 

2 

dg+3+gg=0, 
dy2 dy 

with the inner boundary condition g(0, E) = A. The inner function also has a simple 
asymptotic expansion in E, namely 

The solutions for the g, are 

m=O go(y)=A+Co(l-e-“‘) 

m>l g,(y)=C,(l-0) 

- i’ .” dy’g,-,(y’)+e- 
0 

r1or 

i .pdy’eY’gm-I(y’) 
0 

The C, are constants that will be determined by the asymptotic matching principle. 
The f, and g,, in (7) and (10) can all be found in closed form in terms of elemen- 
tary functions. We will discuss how to handle an integrand that cannot be 
integrated out in closed form in the following section. 

2.3. Formulation of Model II 

Our second model can be described by the following differential equation 

2&f 2x df 
y&d- T+xz+c2Kf=H 
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and the boundary conditions f(0, a) = j( 1, E) = 0, in which K and H are constants. 
This model has been considered and the first seven terms in the asymptotic series 
have been found by Fraenkel [4] for a more general case H= H(x). We will extend 
the series, with H being a constant, by the computer. 

As in Model I, setting E to zero reduces the differential equation to first order. 
The differential equation suggestsf(x, E) to be the outer function, x to be the outer 
variable, and f( 1, E) = 0 to be the only boundary condition being enforced. The 
governing equation and the outer boundary condition suggest that the outer 
function has a simple power series expansion as E --f 0, 

f(x, 8) = f cLm,ow (11) 
IT?=0 

The solutions for thef,,,(x) are 

m<O fm,o(x)=O 

m=O fo,o(x)= -:(I -lnx-x) 
(12) 

The approximation forf(x, E) is not valid in the region x = O(E). In that region, we 
introduce the inner function g(y, E) with y as the inner variable, again related to the 
outer function and outer variable as y = X/E and g(y, E) =f(x, E). The inner function 
f(y, E) satisfies the following transformed differential equation, with y fixed and 
8 -+ 0, 

e -+ 
du . ( 

2y f (-l)‘y’s’- ds 
d. 

+E2gK=H, 
2=0 

(13) 

and the inner boundary condition g(0, E) = 0. The logarithmic term in the outer 
solution suggests that the inner function has the following expansion 

g(y, E) = f em uly) In” sg,,,( y ), (14) 
n=O 72=0 

in which UILL(m) is the upper limit in the logarithm that associates with P terms. 
The value of UILL(m) can be found from the outer expansion solution3 

For m = 0, UILL = 1, g,,,(y) is governed by 

d2g01 &o,=o *+2yL ) 
4 dv 

3 In this case UILL(m) = (m + 2)/2 for even m and (m + 1)/2 for odd m 
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with the boundary condition gO,,(O, E) = 0. The solution is 

kh,Ay) = Co,, e4.v). 

In general, g,.,(y) is governed by 

m=n=O d2g --...2E+2y; 
dy2 

dgmn=H 
dv 

m>o &rn,f? dgmn &m-z,, 
(16) 

dy* +2y dv 
-----L= -&m-2,, -2 -f (-f)‘y’f’d 

1=1 4 

with the boundary condition g,,,(O) = 0. We introduce the notation W,,,(y) for the 
nonhomogeneous terms in Eq. (16), i.e., 

~m,n(Y) = H m=n=o, 

km- = -(Kg,e2Jy)+2 f (-1)’ Y’+~+ m > 0. 
(17) 

I=1 

The solutions for the g,,n are 

&-J.v) = Cm,, erf(y) + Go,,, + G~,.,(Y)~ 

in which 

and C,, are the undetermined constants. The integrands in G2,,,(y) and Go,, 
do not have a closed form solution in terms of elementary functions. But for- 
tunately, in order to find the undetermined constants C,., by matching, only the 
asymptotic forms for G2,,,( y) and G3,,,(y) as y --) co are needed. 

3. PROGRAMMING EXPERIENCE 

We let the computer take over the calculations for the outer and inner functions 
after the first approximations and then perform the matching for finding the 
undetermined constants. Our program is run in a strictly interactive mode. In the 
Appendix, we show the simple algorithm for performing the 0th order matching in 
the first model. 

4 For the second model, it will be the asymptotic form for the inner function as y ---t CCI. 
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Using the algebraic manipulator MACSYMA is generally a lot of fun and often 
quite rewarding. However, it can also be frustrating. The most serious problem that 
we encounter is the limited address space in the core. After loading the main MAC- 
SYMA package (FIX304 1 DSK MACSYM), we are left 57 blocks of core to do the 
job. During the execution of programs, these 57 blocks need to accomodate all 
kinds of data that include compiled functions and arrays, floating point numbers, 
so-called atomic symbols, uncompiled functions, symbolic expression, etc. In our 
calculations, the address space is often further reduced by the additional packages 
(the FASL files) that need to be loaded in for doing a particular manipulation. For 
example, when a definite integration needs to be done, seven additional package 
(DIFINT, LIMIT, RESIDU, RPART, SIN, SINIT, SCHATC) will be loaded in 
and they will take up 40 blocks. Later in the program, if we use the TAYLOR’ for 
truncation on a series, MACSYMA will not be able to complete the calculation 
since the additional FASL file HAYAT for this operation takes up another 17 
blocks in the core and leaves us no room for the calculation. In these cases, we 
often need to find out the number of packages and their sizes for a particular 
operation and try to avoid large-size operations in the program. As the address 
space runs low, we save the expressions that we will need and load up a new MAC- 
SYMA for further calculation. 

It is also frustrating when MACSYMA refuses to do certain manipulation on an 
expression (usually an extremely complicated one). For example, in some cases, we 
found that we have to do the truncation before the differentiation, integration, etc. 
Another time, we found that an infinite recursion is generated when we do the trun- 
cation on a product of two infinite series. Later we found out that is caused by one 
of the infinite series that has only a finite number of non-zero terms. So we 
introduce “a loop” to cut off the series. We usually find these cures by trial and 
error. 

4. RESULTS AND DISCUSSION 

MACSYMA has successfully found the first five approximations in the first 
model. The outer function f(x, E) and the inner function g(y, E) are 

f(x, e)=Be’-“- [Be’-“(x- I)] 

i-~~Be’-” 
c 1 

1 
. . . + > 

5The usage of a particular function can be found in the MACSYMA Reference Manual [S]. 
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g(y, e)= {Be+e-Y(A-eB)) 

+(TBe+U) y+$Be]} 

+ ‘... 

For the second model, MACSYMA found fourteen terms in the series. The 
calculation for the last four constants C,.,, C,.,, C,,, , C,., in Eq. (10) was repeated 
by using the modified matching principle (Eq. 4a). We found that the total time it 
took for finding the four constants on one was comparable to the time that was 
used by Fraenkel’s matching (Eq. 3) for finding them all at once. In other words. 
we do not have to use more computer time if we do not need the higher order 
terms. Also, as the size of the expressions grow in the higher order terms, a MAC- 
SYMA will not have enough address space to complete Fraenkel’s matching and we 
will be released from this problem by loading up a new MACSYMA for finding 
each constant by the modified principle. 

The outer and inner functions in the second model are found to be 

.fb, E) = - 
H(-lnx-x+1) 

2 

+c2 
i 

-yln2x-7(x-l)lnx+ -Fx’ 
i 

+FX- 
HK-33H Hl Nl 

4 +z;-yyz 
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+E4 
HK2 
-lI13x+ 
48 

~(x-l)ln2x+[~x2 

+ 

+E21n2c -y 
i 1 

+ 2 In E 
{ 

-7cln y- 1)+%-j+ ... 
1 

+c2 -yin” y+yln y- 
HK- 3H 

8 
I 

+F[&ln y+( --d--t)]+ ..*} 

+c3 In E 
{ 

-L!Ly+~;+ . . . 
I 

+c3 
i 

-Fy (In y-l)+z(ln y--i)+ ...} 
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+ 84 In E 
HK2 i ( 16 II+2lnp+l+$ + ... 

k 1 I 

+ . . . 

We would like to give some suggestions for future use of MACSYMA in 
asymptotic matching: 

1. We start letting MACSYMA take over the calculation for the inner and 
outer functions that are expressed in a closed form (like Eq. (7) and Eq. (10) in 
Model I) rather than let MACSYMA solve the differential equations that govern 
the inner and outer functions. The reasons are that the ability in solving differential 
equations in MACSYMA is still very limited at this moment and having the close 
form solution for the inner and outer functions will enable us to know exactly what 
kinds of operations will be done in the computer. 

2. One needs to be cautious when the modified matching principle is used for 
asymptotic sequences that are mixtures of powers and logarithms in E. Unless one is 
absolutely sure about the form of the asymptotic sequence (like the case we have in 
Model II), one needs to check all the possible switchback terms (Lo [7]). Dealing 
with the switchback terms is still better than using Fraenkel’s matching principle 
since we will be working on the much simpler lower-order terms instead of those 
complicated higher-order terms. 

3. Extension of series will be limited by storage space or cost. One may want 
to do the truncation as soon as possible so that the storage will be minimized and 
the unnecessary cost for handling extra terms will be avoided. 

4. One common problem in algebraic manipulation is “intermediate expression 
swell.” ‘We did not encounter this difficulty in our calculations. It will happen most 
likely in the calculations for the inner and outer functions (the g,,,(v) andf,,,(x)). 
This can be prevented by knowing that we need only the asymptotic series of 
g,,,(y) as Y --) ~0 and fm,nW as x -+ 0 in the matching. So one can use the 
asymptotic forms of all the functions that are involved in the calculations of gM,n 
and f,,,. Since all the operations are done in the series term by term, no inter- 
mediate expression swell will be anticipated. 

Finally, do not give up when MACSYMA refuses to do a certain manipulation. 
Most of the time, when we figure out exactly what we want to be done, we can find 
a way to get around it. 

6 The checking can be done by “STATUS(FREECORE).” 
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APPENDIX 

In this Appendix, we present the simple algorithm for performing the Oth-order 
matching in the first model. Our program is run in a strictly interactive mode. The 
(C--) lines are input by the user, while the (D--) lines are the answers from MAC- 
SYMA. 

We program the basic functions for the first model in the following MACSYMA. 

:MACSYMA 
-Clobber Existing Job- (Space = yes, Rubout = no) 
This is MACSYMA 304 
FIX304 1 DSK MACSYM being loaded 
Loading done 
(Cl) F[M](X) := IF M = 0 THEN B*EXP( 1 -X) 

ELSE -EXP( -X)*INTEGRATE (EXP(Z)* 
DIFF (F[M - l](Z), Z, 2), 2, 1, X)% 

(C2) OF[M](X, E) := IF M =0 THEN F[O](X) 
ELSE (E-(M))*F[M](X) + OF[M - l](X, E)$ 

(C3) IOF[M, N](Y, E) := SUBST(Y, Y, TAYLOR(OF[M] 
(Y*E, E), E, 0, NIP 

(C4) G[N](Y):=IF N=O THEN A+C[O]*(l-EXP(-Y)) 
ELSE C[N]*( 1 - EXP( -Y)) - INTEGRATE(G[N - l](Z), Z, 0, Y) 

+EXP( -Y)*INTEGRATE (G[N- l](Z)*EXP(Z), Z, 0, Y)% 
(C5) IG[N](Y, E) := IF N = 0 THEN G[O](Y) 

ELSE (E-N)*G[N](Y) + IG[N- i](Y, E)$ 
(C6) OIG[N, M](Y, E) := 

SUBST (E*Y, X, LIMIT(TAYLOR(IG[N] 
(X/E, E), E, G, M), G, 0, PLUS)P 

(C7) SAVE( [LLOl, INNER, DSK, AMES], G, IG, OIG); 
(D7) [ [LLGl, INNER, DSK, AMES], 1 BLOCK, G, IG, OIG] 
(C8) SAVE ([LLOl, OUTER, DSK, AMES], F, OF, IOF); 
CD81 [ [LLOl, OUTER, DSK, AMES], 1 BLOCK, F, OF, IOF] 
(C9) -z 
CDDTI 
* 

Equations (7) and (10) are input in lines (Cl) and (C4). The functions are saved 
and we start up a new MACSYMA to perform the 0th order matching. 

:MACSYMA 
-Clobber Existing Job- (Space = yes, Rubout = no) 
This is MACSYMA 304 
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FIX304 1 DSK MACSYM being loaded 
Loading done 

(Cl) LOADFILE(LLO1, INNER, DSK, AMES)$ 
LLOl INNERDSK AMES being loaded 
Loading done 

(C2) LOADFILE( LLOl, OUTER, DSK, AMES )$ 
LLOl OUTER DSK AMES being loaded 
Loading done 

(C3) SHOWTIME: TRUES 
Time = 5 msec. 

(C4) M:N:O$ 
Time = 6 msec. 
(C5) SOLVE(IOF[M, N](Y, E) = OIG[N, M](Y, E), C[N] 1; 
SOLVE FASL DSK MACSYM being loaded 
Loading done 
HAYAT FASL DSK MACSYM being loaded 
Loading done 
LIMIT FASL DSK MACSYM being loaded 
Loading done 
RPART FASL DSK MACSYM being loaded 
Loading done 
Is X positive, negative, or zero? 
POS; 
Time = 4125 msec. 
(D5) [C,=%EB-A] 
(C6) SHOWTIME: FALSE$ 

(C7) C[O]: %E*B - A; 
(D7) %EB-A 

CC81 OFL-01(X, E); 
(148) B %E’-’ 

(C9) IG[O](Y. E); 
(D9) (%EB-A)(l-%EpY)+A 
(ClO) STATUS(FREECORE); 
@IO) 24 BLOCKS 
(Cll) SAVE([LLOl, INO, DSK, AMES], G, IG, OIG); 
(D11) [ [LLOl, INO, DSK, AMES], 1 BLOCK, G, IG, OIG] 
(C12) SAVE([LLOl, OUTO, DSK, AMES], F, OF, IOF); 
CD121 [[LLOl, OUTO, DSK, AMES], 1 BLOCK, F, OF, IOF] 
(C13) SAVE([LLOl, C, DSK, AMES], C); 
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(D13) 
(C14) --z 
CDDT1 
* 

LILIAN L. LO 

[[LLOl, C, DSK, AMES], 1 BLOCK, C] 

After loading the inner and outer functions in (Cl) and (C2), the 0th order 
matching in Eq. (3) is performed in lines (C4) and (C.5). The undetermined con- 
stant C, is found by MACSYMA in line (D5). 

The higher order matching and the matching in the second model follow the 
same logic. The detail coding can be found in L. Lo [9]. 
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